

## KINEXON RTLS INTEGRATED TOOL TAG

Precise localization integrated into third-party equipment

The KINEXON RTLS Integrated Tool USE CASES Tags provides precise real-time position and motion data for any industrial device. It can be integrated easily into battery-powered assembly tools, barcode scanners, or other industrial equipment.

The extremely small and lightweight sensor enables IoT-readiness of physical equipment. The actual working status of the sensor will be indicated by the built-in 3-color LED. Also, controlling an external LED is supported.

- Real-time Tool Tracing: Automated documentation of manual assembly tool operations in real-time.
- Reliable Tool Approval: Prevention of unintended tool operations based on their relative position to vehicles.
- Seamless Tool Tracking: Precise localization of (cordless) worker tools by attaching a virtual cable.
- Vendor-agnostic Tool Localization: Applicability to industrial grade tool portfolio of various tool providers.

### **DIMENSION** [mm]







### KFY FACTS

### **₱ RF SPECIFICATIONS**

Positioning Technology Real Time Location System (RTLS), radio-based, ultra-wideband (UWB)

Frequency Range UWB (IEEE 802.15.4a): 3 - 5 GHz, 6 - 7 GHz

**Positioning Update Rate**Configurable, typically 1 Hz in motion, 0.1 Hz in standstill

Positioning Data 3D (x, y, z)

Positioning Accuracy < 10 cm (depending on environment)

### **PHYSICAL SPECIFICATIONS**

Indicators LED (3-color)

Inertial Measurement Unit (IMU) Accelerometer: 3-axis, +/-2 g to +/-16 g

Gyroscope: 3-axis, 125 °/s to 2000 °/S

Magnetic sensor: 3-axis, +/- 1300  $\mu$ T to +/- 2500  $\mu$ T

Data rate: up to 1600 Hz

Weight appr. 3.5 g

**Dimensions** 25 x 25 x 2.55 mm (without pin header / connector)

### **ENVIRONMENT SPECIFICATIONS**

Operating Temperature  $-40 \, ^{\circ}\text{C} \, \text{to} + 85 \, ^{\circ}\text{C}$ Storage Temperature  $-40 \, ^{\circ}\text{C} \, \text{to} + 85 \, ^{\circ}\text{C}$ 

**Regulatory Compliance** Once integrated into a third-party device (e.g. an assembly tool), the device

vendor (tool manufacturer) takes the responsibility for certifying the device

including the attached sensor.

# **SPECIFICATION**

# Mechanical drawing



# Label

**Label Size** 

**Label Content** 

**Label Position** 

18mm x 8mm

QR Code, Extended Unique Identifier (EUI)

(1) On the PCBA and (2) outside of the device which contains the sensor.

Example:



# External interfaces

### **WIRELESS CONNECTION**

For wireless connection an ultra-wideband (UWB) interface according to IEEE 802.15.4 is implemented.

### **LEDS**

One LED (3-color) is available for indicating the system status, e.g.,

- UWB connection
- alarm
- status

It is also possible to connect an external LED to the sensor.

### **CONNECTORS**

KNX-T9.1-1.1-x; 2x10 pin header

| Signal | Pin-no. | Pin-no. | Signal         | Comment |
|--------|---------|---------|----------------|---------|
|        | 1       | 2       |                |         |
|        | 3       | 4       | + Vin          |         |
| GND    | 5       | 6       | GND            |         |
|        | 7       | 8       |                |         |
| GND    | 9       | 10      | GND            |         |
|        | 11      | 12      |                |         |
| GND    | 13      | 14      |                |         |
|        | 15      | 16      | External LED 1 |         |
| GND    | 17      | 18      | External LED 2 |         |
|        | 19      | 20      | GND            |         |

# **Electrical Parameters**

| Interface    | Parameter<br>[unit]                    | Min       | Nominal | Max | Comment                                                                                         |
|--------------|----------------------------------------|-----------|---------|-----|-------------------------------------------------------------------------------------------------|
| Power supply | Input voltage [V]                      | 3.0       | 3.3     | 4.5 | For generating 2.8 V board voltage (min. voltage DW1000) min. 2.8 V + 0.12 V = 2.92 V is needed |
|              | Input current<br>[mA]                  | 30 (idle) |         | 300 | when UWB an-<br>tenna is in re-<br>ceiving mode                                                 |
|              | Input current<br>[µA] in sleep<br>mode |           |         | 25  |                                                                                                 |